If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-(3/4)x=17/4
We move all terms to the left:
5x^2-(3/4)x-(17/4)=0
Domain of the equation: 4)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
5x^2-(+3/4)x-(+17/4)=0
We multiply parentheses
5x^2-3x^2-(+17/4)=0
We get rid of parentheses
5x^2-3x^2-17/4=0
We multiply all the terms by the denominator
5x^2*4-3x^2*4-17=0
Wy multiply elements
20x^2-12x^2-17=0
We add all the numbers together, and all the variables
8x^2-17=0
a = 8; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·8·(-17)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{34}}{2*8}=\frac{0-4\sqrt{34}}{16} =-\frac{4\sqrt{34}}{16} =-\frac{\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{34}}{2*8}=\frac{0+4\sqrt{34}}{16} =\frac{4\sqrt{34}}{16} =\frac{\sqrt{34}}{4} $
| y=-2/3-1 | | 17x+9=-28x+3 | | 8x-2x=3=4x+6x=-2x | | 8x-2x=3+4x+6x=-2x | | 2/3x-1/5=15 | | x^2+3x-5=3x-4 | | 1.5x^2-5x=-5 | | -9x+2x+10=12x+5 | | 2x-18=9x | | 2/5x+7=1+x | | 11=100-x-50-2x | | 1.5x^2-5x+5=0 | | (2x+3)=77 | | 4/5x-3=4 | | 3x+6+2x=180 | | 24=x+2x+3 | | -1.54x1.64= | | 8x+4x-4x=16 | | X2-2x=8 | | -8=2/7+a | | 4+3x+4x=39 | | c=75+40(6) | | 1.02g-2=0.55 | | -13x-155=-102 | | 47=2(4+n) | | 72-n=33 | | 89=5x+4x+8 | | x-8+2(4x+4)=-3(x+5) | | )89=5x+4x+8 | | 7x+9x=573 | | 9-x2=9 | | 12x^2+13=5x |